A convergent and precise finite element scheme for Landau–Lifschitz–Gilbert equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Methods for Convection Diffusion Equation

This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...

متن کامل

A Supra-Convergent Finite Difference Scheme for the Variable Coefficient Poisson Equation on Fully Adaptive Grids

We introduce a method for solving the variable coefficient Poisson equation on fully adaptive Cartesian grids that yields second order accuracy for the solutions and their gradients. We employ quadtree (in 2D) and octree (in 3D) data structures as an efficient means to represent the Cartesian grid, allowing for constraint-free grid generation. The schemes take advantage of sampling the solution...

متن کامل

A Convergent Finite Difference Scheme for the Camassa-Holm Equation with General H1 Initial Data

We suggest a finite dfference scheme for the Camassa-Holm equation that can handle general H1 initial data. The form of the difference scheme is judiciously chosen to ensure that it satisfies a total energy inequality. We prove that the difference scheme converges strongly in H1 towards an exact dissipative weak solution of Camassa-Holm equation.

متن کامل

A supra-convergent finite difference scheme for the variable coefficient Poisson equation on non-graded grids

We introduce a method for solving the variable coefficient Poisson equation on non-graded Cartesian grids that yields second order accuracy for the solutions and their gradients. We employ quadtree (in 2D) and octree (in 3D) data structures as an efficient means to represent the Cartesian grid, allowing for constraint-free grid generation. The schemes take advantage of sampling the solution at ...

متن کامل

A Convergent Finite Difference Scheme for the Camassa-holm Equation with General H Initial Data

We suggest a finite dfference scheme for the Camassa-Holm equation that can handle general H1 initial data. The form of the difference scheme is judiciously chosen to ensure that it satisfies a total energy inequality. We prove that the difference scheme converges strongly in H1 towards an exact dissipative weak solution of Camassa-Holm equation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerische Mathematik

سال: 2014

ISSN: 0029-599X,0945-3245

DOI: 10.1007/s00211-014-0615-3